Serial Interface Controller

Anand Kandasamy
Instrumentation Division
Brookhaven National Laboratory
Upton, NY 11973

April 14, 1995

1. Intr oduction:

The idea of building a Serial Interface Controller (SIC) proposed by
Paul O’ Connor, Instrumentation Division, BNL is to determine the feasibility of incorporating a

Serial Interface Controlled CMOS ICfor charge amplification, shaping, analog storage and
multiplexing used in particle detectors for high energy physics experiments. The serial data
pumped into the CMOS IC’s will be used to control many circuit parameters like digitally con-
trolled gain, shaping time, precision preamplifier calibration circuits and many other parameters
like timing discriminators mode of operation.

The SIC board built will be tested on a Serial Interface Controlled Digital -
to - Analog Convertor, which follows either Motorola’s SPI/QSPI or National Semiconductors
Microwire interface technique. The DAC chosen for this was MAXIMAX537, a Quad, 12-bit
DAC. The function of this controller can be achieved by using some on-shelf micro-controllers
like the Motorola’s MC68HC11, which offers dedicated SPI ports. The drawback encountered in
using this controller is the overhead involved in putting together an user interface where the user
can dynamically change is settings and load the SIC device. This is very critical in testing fewer
number of CMOS I& having SIC. The SIC board described here takes care of this dynamic user
interface issue.

1. P.O' Connor, Low Noise Signal Processing IC for Interpolating Cathode Strip Chambers,
BNL-61085, (submitted to IEEE Transaction on Nuclear Science).

Page 1

2. Description of an SIC device:

The SIC device described here is the MAX537, which is the device that has
been chosen for testing the SIC board.

The MAX 537 combines four 12-bit, voltage output digital -to- analog con-
verters (DAC) and four precision amplifiers. Each DAC has a doubllerédfinput, aganized as
an input register followed by a DAC register. A 16-bit serial word is used to load data into each
input/DAC register. The serial interface is compatible with either SPI/®S®IMicrowire™,
and allows the input and DAC registers to be independently or simultaneously with a single
software command. The DAC registers can be simultaneously updated with a hafidi@re
pin. Figure 1. shows the functional diagram of MAX 537.

SDW LDAC' 'I"P Afnd Dfnd vrd VT REF AB
DECADE
CONTROL
INPUT DAC DAC A OUT A
REG A REG A
e INPUT DAC DACB ouT B
5 REG B REG B
o
L
[a'
m
F INPUT DAC DAC C ouTC
l; REG C REG C
om
[{e]
—
i INPUT DAC DACD OUT D
SR CONTROL REGD REGD
cs sDI scK REF CD

Figure.l Functional Diagram of the MAX 537 DAC
» Serial-Interface Configuration:

The MAX 537’s 3-wire or 4-wire serial interface is compatible with both
Microwire and SPI/QSPI. The interface is shown in figure.2 In this configurihC can be
tied either high or low for a 3-wire interface, or used as the fourth input with a 4-wire interface.
The connection between SDO and the serial-interface port is not necessary, but may be used for
data echo. With a 3-wire interfaceé$, SCK, SDI) andlDAC tied high, the DAC's are double
buffered. In this mode depending on the command issued through the serial interface, the input
register(s) may be loaded without affecting the DAC register(s), the DAC register(s) may be
simultaneously updated from the input registers. With a 3-wire intel®&e3CK, SDI) and

Page 2

LDAC tied low, the DAC registers remain transparent. Any time an input register is updated, the
change will appear at the DAC output with the rising edgeSf

MAX 537 Microwire port MAX 537 SPI/QSPI port
SCK SK SDO* MISO*
SDI SO SDI MOSI
SDO* SI* SCK SCK
CSs 110 CSs 110
LDAC' ** /0 LDAC' ** /0
* SDO/SI conection is used for readback if needed * SDO/MISO conection is used for readback if needed
** LDAC' is not needed for a 3-wire interface ** LDAC' is not needed for a 3-wire interface

Figure. 2. 3-wire and 4-wire configuration.

» Serial Interface Description:

The MAX 537 require 16 bits of serial data. Data is sent MSB 8. (
must remain low until all 16 bits are transferred) the serial data is composed of two DAC address
bits (A1, A0),two control bits (C1, C0), and t he 12 data bits D11....DO (figure 3.)

M SB LSB
16 bitsof serial Data
Address Control DATABITS
Bits Bits M SB LSB
Al A0l C1 CO| D11 DO
4 Addres/Control 12 DATA bits
bits

Figure. 3. Serial-Data Format (MSB sent first)

Page 3

Figure 4 shows the serial interface timing diagram. The chip sele@gimust be low to enable

the DAC's serial interface. Whe®S is high, the interface control circuitry is disabled and the
serial data output pin (SDO) is driven high. Data is clocked into the internal shift-register via the
serial data in pin SDI) on SCK’s rising edge. Data is latched into the appropriate input/DAC reg-
isters onCS rising edge.

Input registers updated\

SCK

= [T X (XX
- I W

Figure 4. Serial-Interface Timing Diagram.

* Serial Data Output:
The serial data output SDO, is the internal shift registers output. The MAX

537 can be programmed so that data is clocked out of SDO on SCK’s rising edge (MODE 0) or
falling edge (MODE 1). On power-up SDO defaults to MODE 0 timing.

Page 4

Table 1: Serial Interface Programming Commands.

'i‘ 'g Cll g D11.....00 | LDAC FUNCTION

O |0 |0 |1 | 12Bitdata 1 Load Dac A, Input register, O/P unchangr:d
O |1 |0 |1 | 12Bitdata 1 Load Dac B, Input register, O/P unchang)ed
1 (0 |0 |1 | 12Bitdata 1 Load Dac C, Input register, O/P unchang‘ed
1 (1 |0 |1 | 12Bitdata Load Dac D, Input register, O/P unchangbd
O |0 |1 |1 | 12Bitdata 1 Load A input register, All Dac reg. updated
O |1 |1 |1 | 12Bitdata 1 Load B input register, All Dac reg. updated
1 (0 |1 |1 | 12Bitdata 1 Load C input register, All Dac reg. updated
1 (1 |1 |1 | 12Bitdata 1 Load D input register, All Dac reg. updated
X |0 |0 |0 | 12Bitdata X Load all DAC from shift register

X 11 |0 |0 | XX........ XX X No operation (NOP)

O | X |1 |0 | XX....... XX 1 Update all DAC from their DAC register.

1 (1 |1 |0 | XX........ XX X configure to MODE 0

1 [0 |1 |0 | XX........ XX X configure to MODE 1

O |0 | X |1 | 12Bitdata 0 Load Dac A and update Dac A immediately
0O |1 | X |1 | 12Bitdata 0 Load Dac B and update Dac B immediately
1 |0 | X |1 | 12Bitdata 0 Load Dac C and update Dac C immediately
1 (1 | X |1 |12Bitdata 0 Load Dac D and update Dac D immediately

3. Serial Interface Contmller Board Design:

* User Interface:

1. The user interfaces to the controller board by setting the digital code corresponding to the data
bits D11....D0 of the MAX 537. The user input is in the form of a bank of switches, which are of
Hexadecimal output type. Three switches are needed for each DAC.

2. A monostable multivibrator is used as the second user interface to initiate the serial data down-
load sequence.

Page 5

* Main controller:

The main controller does the task of reading in the 48 bits of information (12 bits/dac X 4) and
when the user initiates the download sequence, it pumps out data serially along with two more
signals SCK, the clock for the SIC device @8l for updating SIC device registers. The main
controller has two modes of operation namely the Master and Slave mode. For configuring the
MAX 537 the Master mode of operation is selected. In this mode the 48 data bits are read
from the user interface and shifted out on demand. In the slave mode of operation 64 bit serial
word is serially obtained from an external controller which fetches the 64 bit word stored in an
external PROM or RAM. This mode is used for configuring larger number of SIC devices. This
mode is introduced keeping in mind its use when the controller is used to configure SIC CMOS
shaper IGS in a typical detector application where the device count exceeds 1000. Figure 5 shows
the MODE 0 configuration and Figure 6 shows the MODE 1 configuration.

USER INPUT (HEX switches)

a
re)
[o0]
q—
CLOCK source
N === =-=-=-= |
! |
I I
|
Start button = 300, :
Monostable : SIC |
() Multivibrator Controller |- SCKI DEVICE |
f | :
|
|
|

Figure 5. MODE 0 (Master) operation.

The SIC device in the above figure is the MAX 537 DAC. In the MODE 1 mode of operation the
SIC device can be any SIC device including the SIC CMOS shaper IC’s as mentioned before.

Page 6

fmmmm e —— — -
I I
Start SDO I I
I I
ek sck_ | mux [. SC |
|
Controller 3 : DEVICE |
S L I I
CS : | |
DIN EN SHIFT | | :
O

|

|
| r-—-——-——-—-—-—-—--
| | I
| [I
| = | I
_ I I SIC :
= Micro : | DEVICE
controller Data PROM/ | | I
/ I I !
v RAM | | |
8 | l_ o _ _____ I

|

Address v

Figure 6. Mode 1 (Slave) operation.

4. Main controller design.

The Main controller for serial interface controller is realized using a
XILINX FPGA. The device used is XC3064-70-PC84. This is an 84 pin PLCC device. The main
factor influencing the choice of this device is the pin count, as the controller required 48 bits for
the user data input alone.

The main controller contains the following sub-modules:
1. 64 BIT parallel loadable serial output shift register.
2. Counters (10 bit and 4 bit).
3. Internal clock divider and clock sequencer.
4. Control signals generating module.
and a few other logics for operating mode determination.
The operation of the main controller is as follows.
« MODE 0 (MASTER) mode:
1. When the user triggers the down load sequence start button, the pulse from the monostable

multivibrator clocks a D-Flip-flop to logic "1’ and this output is used to enable the internal clock
divider and

Page 7

sequencer module.

2. The mode of the external SIC device is assumed to be at MODE O (rising edge latching). This is
assumed so that no additional steps are necessary to program the external SIC device to MODE 1
(falling edge latching).

3. One clock period is used for loading the 64 bit parallel loadable shift registers with the user
input from the hexadecimal output switches.

4. 64 additional clock cycles are used to complete the entire down load sequence for all the 4
DAC's in the external SIC device (MAX 537).

5. At the end of every 16 internal clock cycl€S signal is generated to update the input regis-
ters.

6. After the end of the entire download sequence the D-flip flop set to logic "1’ by the trigger from
the monostable multivibrator is reset and the entire controller waits for the next user trigger.

* MODE 1 (SLAVE) mode.
1. The Shiftenable line is held high by the external micro-controller.

2. The micro controller shifts in 64 bit of data into the serial input pin (DIN) of the main control-
ler, the shift register in this mode uses an external signal from the micro-controller to shift the 64
bits of data.

3. At the end of every 15/16 bits of data shifted the main controller informs the main controller
that the next bit is the 16th bit/acknowledges the receipt of 16 bits. This signal is useful for hand-
shaking purposes.

4. At the end of the 64 bit shifting sequence, the Shiftenable is pulled low by the micro-controller

5. The micro-controller initiates the download sequence through the trigger pin. On receiving this
signal the main controller performs the same operation as that of mode 0, except it does not use
on clock period for loading the user input.

6. After the end of the entire download sequence the D-flip flop set to logic "1’ by the trigger from
the micro-controller is reset and the entire controller waits for the next micro-controller trigger.

The schematic of the SIC controller is shown in figure 7. The shift register in the controller has its
higher order 4 bits hard wired inside the LCA. These 4 bits corresponds to the 4 address and con-
trol bits necessary for programming the MAX 537. Detailed schematic of internal modules can be
found in Appendix. A.

Page 8

SERI ALOUT

LOAD

VDD

&7 XILINX

DAC CONTROLLER

>~ ota oova |otd cova
> ea oova | ed cova
> 8a oova | sd cova
o oova | za-cova
> oa oova | od cova
> Sa oova | sd cova
%o oova | vda cova
> Ea oova | sd cova
> Za oova | zd cova
> wa oova | Td cova
> 6a oowva | odcova

e 2ta ToVa
TTd TOva TTd TOva w
> oTa Tova |ota Tova i
T ea tova | ed tova
>aa tova | sa tova P
T o mova | sa Ttova
od tova od” TOva LW
>TSa tova | sd tova I
o ova | va tova O
>Tea towa | sd tova 5
2d T1TOva 2d 1TOva
Td TOVAa Td TOVa
od tova od~ tOva
I_"g STa zova
rId Z2Ova
§ L ETd 2Ova
T Z2Td Z2Owva
N

Ttd cova

o
o
o
|
;
64 BIT Paral |l el -Loadabl e Seri al

64bsr

AND2

PHI 2

RESET

cLkzl clk2
PHI O
PHI 1
PHI 2|
EQUENCER

cLocks 2
cLock

RESET
cLKP

oLk

LOAD

INTER_| NPUTO

) i
mg | ¢
LR
‘o
d

cTLGEN
oo
co
S
co
coL

SET

cLocK

N

L acx

RESET
cLock

;
Z
..g
g i
§
: g
A /
§ z
gl e

RD

3

TRI GGER

Page 9

Figure 7. Schematic of the DAC controller

The board clock of 10 MHz is divided internally by two relaxing the circuit timing parameters.

The circuit shown in figure 8, known as glitch free sequencer generates three glitch free pulses
corresponding to the successive half periods of the clock. This sequencer is an useful module
since it generates pulses to be used for shifting the data in to the external SIC device and the clock
for the external SIC device. The rising edge of the first pulse is used by the internal shift register
to shift its data out of the SDO pin and the rising edge of the second pulse (delayed by an half
period of the input clock) is used as the SCK (serial clock) for the external SIC device. As it can
be seen due to the half period delay in the availability of the data at the external SIC device pin
SDI and the clock for latching it, setup time for the flip-flops are relaxed.

VDD
.
o@'
AN
OoR2
—# o
AND2
FDRD FDRD
D D
PHI O
[-
ol_P ol_NEG
pC pC AND2B1
RD RD
CLKP PHI 1
[—
am—
RESET ¢
AND2
'{}O CLKPBAR AND2B1
PHI 2
B

T

Figure 8. Glitch free clock sequencer.

The glitch free clock sequencer in the above figure reduces the clock frequency by 1/4 and also
the duty cycle is now 25%. The signal phiO is used as the internal 64 bit shift register shift and
load clock, signal phil is used as the SCK clock for the external SIC device and the signal phi2 is
used to aid in the removal of glitches in @8due to race conditions. The waveform of the glitch
free sequencer is shown in figure 9.

Page 10

0 o O o W B M

PCS

NEG

PHI 0

— » -~ —a@ — g

500n 1u 1.5u

Ti me (Seconds)

Figure 9. Waveforms for the glitch-free sequencer.

The waveforms for the MODE 0 (MASTER) operation of the DAC controller built using the
XILINX FPGA is shown in figure 10. In the waveform, trigger is the monostable multivibrator
output. clk2 is the divided by two clock of the master clock. The load clock being high for one
clock cycle after the trigger can be noticed, during this clock edge, the user input from the hexa-
decimal switches are loaded in to the 64 bit shift registers.

Page 11

11891 /OVa /IAHA /A /PueUE /9aLO(Igp U008) Al 1|

o)L
sﬁm 30._\ sa_um 3_ON JCH

1NO7V [|¥3S

dqvaso

avon

o = = © —

A0S

390 M1

Figure 10. Waveforms for the DAC controller.

Page 12

Figure 11 shows the pin-out of the XILINX FPGA configured as the DAC controller and Figure
12 is the LCA map of XILINX FPGA configured as the DAC controller.

0O 0| N © < M| Ol O O 0O 0| N ©

N[N N N[N Lo | (0) O S 5

79 N N o 79

AoBR8BB8BEBANAR T08 8

dJoddddddddddd oddgd T
DAC Co6 44

388838833888 §8838 —

DAC _C5 [0

DAC _C4 39

DAC _C3 38

DAC C2 |37

14 | CLOCK_ | N

DAC _C1 [35

15 TRI GGER DAC _CO [30

49 SERI ALOUT

DAC_ A3 |63

50 SCLK_OoUT DAC_ A2 |69

DAC Al [79

S1 CSBAR

DAC _AO 8O

73 | DOUT_LCA D7 |56
D6 |58
74 | CCLK_LCA
D5 |60

D4 62
_ D3 66
12| PVWRDWN
DEVI CE=X3064PC84 D2 68
33 M NC=13, 41, 53, 61, 67 D1 (70
GND; 1, 21, 43, 65
31 ML 6 > é VvDD; 2, 22, 42, 64 Do 72
32| MD - w
E E F d RCLK [71
L
nin Z2 = L
Wi -~ I = 6 O 4 N 8 8
o ¢ own I Q d g V] } n N Q© 0 9 9 o
0 L L <K q L L €4« I
O < N[O A N M N[O N O] N | S| O] O0f A O 0 1 | O
n v wu 0 0] N NN N 00 © | - M o

Figure 11. Pin-out for the DAC controller FPGA chip.

The DAC controller had to share pins along with the LCA's configuration pins used during the
configuration cycle of the LCA device. External bus transceivers were used to multiplex the
shared lines for the LCA configuration and the DAC controller. The external devices used were
Quad 2 to 1 multiplexer (SN74LS157) for multiplexing the EPROM output and the hexadecimal
switch outputs. Octal bi-directional bus transceivers (SN74ALS645A) were used for the Address
bus for the EPROM and the hexadecimal switch outputs. The EPROM used is 27C64 (64Kbits).
Detailed schematic of the SIC controller board is included in the appendix.

Page 13

1] [o AT J oo e
e8] o D.ﬁ o Jof Jo td._‘uj_zq of ofe
B —mﬂﬁ‘; o Jo Jo] o ol 6| o 5|8

— T HH e TS U
B |0 Jo [oHdNel o o Jof [oHe] 4] o o B

+ r r + F F ¥ + + r F + b
gl SN e
Bmg I [geloel Jol (o] ol (ol o o o
Bmg I Johen [0 gy o o] o [oHg 6] o opd
F115 0 [o e lo kgt o [elrie] o o] 2
B1Te o o, 6 oo
A|hss = 2%
B[e o T o R o o o
Bmé o o o o |6 [old8] o | |8
Bl o [oHen e o, |o] [pfp T ol [
Bhe o oo [0 o oo 6| of
B8 o [oHetl: 6 d o [o o [0 de] o | B

=T H—1 - N |-

B8 o |ol B o o [0 o o |o] o
H::ﬁ— i v v T | b
B o jopRod o o o [of ol lopf ol
g o ol ol o] o o] oplo] & o n.*?l[g

Print Display: DAC.LCA (3064PC84-70), XACT
Figure 13. LCA map of the controller.

LCA DESIGN SUMMARY:

Part type=3064PC84-70

66 of 224 CLBs used

67 of 70 1/0O pins used

0 of 50 internal IOBs used

1 of 32 internal three-state signals used (1 TBUFS used)

82 CLB flip-flops used
Only 30% of the CLBs are used for the entire design. The design could have been targeted
towards lower CLB FPGA's, but the pin count requirement was the factor influencing this deci-
sion.

5. Serial Interface Control in CMOS Shaper Integrated Circuit:

The Technique of Serial-Interface Control can be incorporated in to an
CMOS shaper Integrated circuit. The CMOS shaper IC has the primary function of charge ampli-
fication and shaping of signals from detector components like cathode strips. In order to incorpo-

rate a digitally controlled stages for the gain and the shapingtinitg/function are needed fof 2
steps/function. This bits/function figure is an unfavorable method as it increases the pin count
and hence the package size and many unfavorable consequences like lead inductances following

Page 14

the package size increase. It is a good method to have serial interface controlled device technique
for these Integrated circuits. Since the gain and shaping time are not going to be changing dynam-
ically during the circuit operation, this technique can be implemented into an CMOS IC for the
application discussed before. Figure 13 shows the functional diagram of an CMOS IC with SIC
protocol.

PO il __
: Preamp :
' |
l MUX —| > Gain Stage Shaper Stage |
L, !
: v I/P :
: Preamp |
| | I
V| MUX —| > Gain Stage Shaper Stage !
ro|ou . 1P |
| B v . . . |
| O |
1 w |
1 x |
1 E :
I
T |
| B oUTPUT | Output
I
' STAGE ! M\
: |
! |
! I
! |
! |
! |
! |
! |
|
: Preamp I
! I
: MUX — Gain Stage Shaper Stage :
| —‘ 1P !
|
! I
! I
I
: Gain and shaping Time Control modules :
|
-4 — W — W
SIC control/Data

Figure 13. CMOS shaper Integrated Circuit with SIC.

The data bits pumped into the CMOS IC can be used to control the circuit parameters like gain/
shaping time and also in steering On chip precision capacitors for precise calibration of the pre-
amplifiers. The data bits can also be used to control the mode of the timing discriminator (not
shown in the figure), Leading Edge (LED) triggered or Constant Fraction (CFD). By making the
CMOS shaper IC to be serial interface controlled and compatible with SPINQ&MWicrow-

ire™, the advantages of lower pin count and compatibility with most low cost SPIQ&PI
Microwire™ supporting micro-controllers are enjoyed.

Page 15

6. Testing and Results of the SIC:

The Serial Interface Controller was tested for its functionality using an logic ana-
lyzer to verify the stream of bits out of the download line, clock for the D2AC&hdontrol
signal. The Serial Interface Controller was realized by fabricating it as a motherboard which
has provisions for housing a daughter board where the serially controlled device will reside.
The schematics for the motherboard and the daughter board is given in Appendix A and the
PCB layouts in Appendix C.

The results obtained from the testing of the entire SIC setup is shown as follows:

OUTPUT in Volts
Vcontrib (V) DAC A DACB DACC DACD
BIT1 1.25 1.250341 1.250421 1.250004 1.250355
BIT 2 625.0E-3|| 625.35400E-3| 625.44200E-3| 624.95700E-3| 625.31600E-3
BIT 3 312.50E-3|| 312.86400E-3| 312.98000E-3| 312.45000E-3| 312.73400E-3
BIT 4 156.250E-3|| 156.61050E-3| 156.70260E-3| 156.09710E-3| 156.45080E-3
BIT5 78.1250E-3 78.51670E-3| 78.58580E-3| 77.96740E-3| 78.32860E-3
BIT 6 39.06250E-3 39.43920E-3| 39.52610E-3| 38.91540E-3| 39.24760E-3
BIT 7 19.53125E-3 19.89640E-3| 19.99410E-3| 19.38740E-3| 19.71360E-3
BIT 8 9.765625E-3 10.14070E-3| 10.23180E-3| 9.61320E-3| 9.95990E-3
BIT 9 4,8828125E-3 5.26580E-3| 5.34470E-3| 4.72880E-3| 5.06520E-3
BIT 10 2.4414063E-3 2.82260E-3| 2.91420E-3| 2.28640E-3| 2.61880E-3
BIT 11 1.2207031E-3 1.62230E-3| 1.70180E-3| 1.05440E-3| 1.40680E-3
BIT 12 610.35156E-6| 988.40000E-6| 1.08640E-3|429.90000E-6| 813.90000E-6
Error in Volts
Error A Error B Error C Error D
BIT 1 -341.0E-6 -421.0E-6 -4.0E-6 -355.0E-6
BIT 2 -354.0E-6 -442.0E-6 43.0E-6 -316.0E-6
BIT 3 -364.0E-6 -480.0E-6 50.0E-6 -234.0E-6
BIT 4 -360.5E-6 -452.6E-6 152.9E-6 -200.8E-6
BIT5 -391.7E-6 -460.8E-6 157.6E-6 -203.6E-6
BIT 6 -376.7E-6 -463.6E-6 147.1E-6 -185.1E-6
BIT 7 -365.2E-6 -462.9E-6 143.9E-6 -182.4E-6
BIT 8 -375.1E-6 -466.2E-6 152.4E-6 -194.3E-6
BIT 9 -383.0E-6 -461.9E-6 154.0E-6 -182.4E-6
BIT 10 -381.2E-6 -472.8E-6 155.0E-6 -177.4E-6
BIT 11 -401.6E-6 -481.1E-6 166.3E-6 -186.1E-6
BIT 12 -378.0E-6 -476.0E-6 180.5E-6 -203.5E-6

Each bit is individually set for each DAC and the output is measured in the above case, and
also results were verified for random DAC input settings. The following figure 14 shows the
MAX 537 Error (Vout_actual - Vmeasured) along with the manufacturer hstddSB total

error.

Page 16

MAX 537 Error

.0007

E+

E-
BEError DAC_D
OError DAC_C
B Error DAC_B
OError DAC_A

.0005

.0003

.0001

4 : i . " . : o } : } . :
.0001 i
.0003

.0005

jany

.0007

BIT
Figure 14. MAX 537 Error (Vactual - Vmeasured).
An user interface was written for MS Windows using Visual Basic. The program can be used

to obtain the Digital code to be set for a given voltage and also to determine the output
voltage for a particular code set. The control panel for the program is shown in Appendix D.

Page 17

Appendix A. Schematics

List of figures:

Figure A. Serial Interface Controller Board schematic (1/3).
Figure B. Serial Interface Controller Board schematic (2/3).
Figure C. Serial Interface Controller Board schematic (3/3).
Figure D. 64 bit shift register.

Figure E. 16 bit parallel loadable serial output shift register.
Figure F. 1 bit parallel load D Flip-Flop.

Figure G. Clock module.

Figure H. Control signals generating module.

Figure I. Load signal generator.

Figure J. CS signal generator.

Figure K. Internal reset generator.

Figure L. Operating mode clock control module.

Figure M. SCLK enable module.
Figure N. Digital - To - Analog Daughter board Schematic.

Page 18

XNIX —=

[} >0 T
| | >0 T
—= e

-
H
:
H
3
& o

000
]

=
il
=
eton
= = |7
™~ =
= =
o
T
™~ Gan gy
”—. e
[t o vova

Figure A. Serial Interface Controller Board schematic (1/3).

Page 19

o eo g
oac e

>00T OSH

>00T 2GS

>00T 854

>00T 09

ooy
oac 7

>00T TS

>00T ZSd

>00TESH

>00TS S

onc g
onc 1

¢y

00T L

>100TO

>00T8

>00TOSH

oo g
onc s

>00T SEH

>00T vEMH

>00T £€4

>00T Oz

>00T Ot

>00T 684

>00T8EM

>00T9EM

EE
g 2 g g
FE R
. VVN—
Moottt
>00TS b
>oo0TE LA
00T Tt

oo g
oac o

>00tT 2z

>00T 224

e g
oac o5
oac o7

>00T 624

>00T ZEH

>00T ZZd

T

>00T £

oo g

00Ttz

>00T9 2

>00TZ T

>00TO T

oo g

>00T8 T

00T T2

>00T TTH

>00T ZTH

oo g

>00T ETH

>00T STH

>00T O

ooy

onc cigy

>00T 84

>100TOTH

>00TZ9H

>o0o0TTOH

>00TESH

>00T SH

& XILNx

p -

sootT 2 -—||-

Page 20

Figure B. Serial Interface Controller Board schematic (2/3).

& XiLnx

FIFIH R

33
1
i b

DECOUPLI NG CAPACI TORS
7805
7905

] T

12v+
12Vv-

toscloslaulslccla-lacairlcelco-Lc-Lc7

~T" 0.10T" 0. 107~ 0. 107~ 0. 10T~ 0. 10T~ 0. 107~ 0. 10T~ 0. 10T 0. 10T~ 0. 10T~ 0. 1U

Figure C. Serial Interface Controller Board schematic (3/3).

Page 21

VIEW/@@///’E

Par al |l el - Load Seri al - out

64 bit

SHI FT REGQ STER

Anand Kandasany

| DRAVN BY:

L v
8 8
—_— _— <
STd eova std o o 5 STd Sta oova
—ee] ——— <
vTd Z2Owva v Td v Td Td OOwva
—_— —_—— <
€Td 2Owva €Td €Td €Td O0Owva
— —_—— <
Z2Td 2Oowva cTd cTd Z21d 0Owva
—ee] m —— <
TTd Z2Owva TTd g % TTd TTd OOwva
P S —— I ———— i —
OTd 2Z2Owva OTd % % OoTd OTd 0OOwva
—_—] —_— <
6d 2Z2Owva 6d 6d 6d O0Ova
—_— —_— <
8d eova 8d ad 84 oova
— —_——— <
Za zova 2d 0 D 2d Zd oova
| ————— _— <
9d 2Owva 9d 6 5 9d 9d O0Owva
> Sd eova Sd - H Sd Sdoova <
—ee] ———— <
rd 2Owva rd d d oOwva
| S — I — 4
€d cova ed ed €d_oova
—_— —_— <
cd 2Oowva zcd é zcd Z2d oowva
Td 2Owva Td z Td Td oOOva
| — A ——— <
Ood 2Owva Ood d j E od Ood oowva
- .
8 8
—_—] —_— <
STd sova sTd o o § STd STd Tova
| S ———— E—————
Td €O0wva v Td v Td rTId TOWwAa
P S ———— I —————
€Td €O0wva €Td €Td €Td TOWVaA
——ee] —— <
Z2Td €Owva ZTd ZTd Z2Td TOwva
—ee] m —— <
TTd €Owva TTd g % TTd TTd TOwvaA
—_— —_— <
OTd €Owva OoTd H-J % oTd OTd TOwva
—_— —_——<
6d €O0wva 6d 6d 6d TOwva
—ee] ——— <
8d €Owva 8d 8d 8d TOwvaA
| S —— _— <
Zd €0wva Zd 2d Zd TOwvAa
—_—] —_— <
9d €O5wva 9d od 9d TOwva
—_— —_— <
Sd_eova sd - H sd Sd_tova
P — —_—— <
va eova vd vd va Tova
P S —————— _— <
ed €Owva ed ed €d TOwva
—_—] — <
z2d €O5wva zcd é z cd z2d T1TOwva
—ee] —— <
Td €Owva Td d j Td Td TOwva
| S — I —
od eova od 8 od od_ tova

RESET
LOAD
CLOCK

N I

Page 22

Figure D. 64 Bit shift register.

8T 7/ S66T -8T ~T="A 113 1D
v

a

A8 MAVEA
Auesepuey pueuy

IO - |'e 148s peOT - |9 | |eded 119 9T

d31s ©3d 14 HS

auboy 3TN

Py Py Py
1ia 1id 1ia 1ad Aﬁ 1a 1ad Aﬁ 1ia 1id ﬁ
ax ax ax axd
RRe) RRe) =) RRe)
— —
e} a o) a o) a o) a
1noa
N 1 dd avOl EN 1T8d avol N 1 Tdd avol N 1 Tdd avol

zd

STd

8d

TTd

|

I

|

Sd

vd

zd

Td

od

avo dN ITRd avo dN 1T avo dN I Tdd avo dN Id)| avo dN I avo dN ITRd
— a o a e} a o] a o] a [e) a ol |
Vv.._O |Vv_40 |Vv_._0 .v|Vv_._D lev_._O .lev.._O
ad asd asd ad ad ad
1ia1id 11a g 14a1ad 14 1 1ia1id 1ia1id
FECE S
11a 1id Jia1id Jia1id 1ia g 1ia 1ad 1ia 1ad
ad asd asd ad ad ad
>I00T1O
RRe) RRe) RRe) RRe) o) RRe)
I —_
o) a o) a o a o) a o) a o) a
N 1 Tdd avol N 1 dd avol N 1 Tdd avol EN 1T8d avol N 1 Tdd avol N 1 Tdd avol

Figure E. 16 Bit parallel loadable shift register.

Page 23

LOAD

PRLI NP

® 7 XILINX

A \ 5

Page 24

Figure F. 1 Bit Parallel load D-Flip-Flop.

D D PHI O
— o P ol_NEG Q) ;
PC PC AND2 B1
RD RD
CLKP PHI 1
—e 1 —
2 RESET *—

AND2

PHI 2

'@O CLKPBAR AND2B1

GLI TCH FREE CLOCK SEQUENCER

. o

FDRD
D ouT
— N Q
i
RD
a4
RD

CLOCK DI VI DER

Lo e &7 XILINX

A | 5

Figure G. Clock Module.

Page 25

A B
COUNTER_I NPUTO
COUNTER_| NPUT1
COUNTER_I NPUT2
COUNTER_| NPUT3 Ul
COUNTER_| NPUT4
o COUNTER | NPUT1
1 COUNTER_| NPUT5S ® COUNTER_ I NPUT2
P COUNTER_I NPUT3 oA
COUNTER_| NPUT6 @ COUNTER_ I NPUT4 Loap— LOAD o
COUNTER_I NPUT5
COUNTER | NPUT7 COUNTER_| NPUT6
® COUNTER_| NPUT7
COUNTER_| NPUT8 P COUNTER_| NPUTS8
COUNTER_ I NPUT9
COUNTER_|I NP
— L OADGEN
uz2
@ —COUNTER | NPUTO
@ COUNTER_I NPUT1
@ COUNTER_| NPUT2
COUNTER_ | NPUT3 csi
2 “ COUNTER_| NPUT4 CSBAR BAR
@ COUNTER_I NPUT5
® COUNTER_I NPUT6
® COUNTER_I NPUT7
® COUNTER_ I NPUTS8
® COUNTER_I NPUT9
CSBARGEN
u3
L I COUNTER_I NPUTO
COUNTER_I NPUT1
COUNTER_ I NPUT2
‘HCOJNTER:I NPUT3 STROBE
() COUNTER_ | NPUT4 STROB!
s ® COUNTER | NPUT5
) COUNTER_I NPUT6
) COUNTER_I NPUT7
® COUNTER_I NPUTS8
® COUNTER_I NPUT9
STROBE
[w4
@ —| NPUT2
[| NPUT3 OCKI
pe | NPUTS cL DI SABLE
® | NPUT5 CLOCKDI SABL
® | NPUT6
’ ® | NPUT7
® | NPUTS8
® | NPUT9
CLKCTL
us
ICOUNTER_| NPUT2
ICOUNTER_| NPUT3
ICOUNTER_| NPUT4 CLOCKENABLE——————
ICOUNTER_ | NPUT5S NA
ICOUNTER_| NPUT6 CLKENABLE
ICOUNTER_| NPUT7
ICOUNTER_| NPUTS8
s ICOUNTER_I NPUT9
SCLKCTL
A ‘ B

Figure H. Control Signals generating module.

Page 26

COUNTER_I NPUT6 >»————

COUNTER_I NPUTS5

COUNTER_I NPUT4
NOR4

COUNTER_I NPUT3

Y Y Y
J

COUNTER_I NPUT9

QAD

COUNTER_I NPUTS8

ANDS

COUNTER_I NPUT7 4
COUNTER_I NPUT2
COUNTER_I NPUT1 : NANDZ2

| ocadgen

&7 XILINX

A | 5

Page 27

Figure I. LOAD signal generator.

uab 1eqgso

01NdN 1" H3INNOD

o)
o

T1NdN 1" H31INNOD

p——< 91ndN 1ITHIINMOD

—— Z1NdN 1H3INNCO

81NdN I H3INNOD

Y1NdN |- H3INNOD

S1NdN 1”3 INNOD

61NdN |- 3 INNOD

Z1NdN I"H3INN0O

€1NdN 1”3 INNOD

Figure JCS signal generator.

Page 28

COUNTER_| NPUT6 '{}C
COUNTER_| NPUT5 AND2

COUNTER_I NPUT9 1@0

COUNTER_I NPUTS8

\

l

y

COUNTER_| NPUT7 '[}O
COUNTER _| NPUT1 1{}0

COUNTER_I NPUTO

ANDS

L

COUNTER_I NPUT2 >—‘

ANDS
COUNTER_I NPUT4

COUNTER_| NPUT3 '[}O

strobe

&7 XILINX

A |

STROBE

Page 29

Figure K. Internal reset generator

I NPUT9

MODE

I NPUTS8

I@O 'L/\ CL OCKDI SABLE

I NPUT7 >—‘

I NPUT3 >———

I NPUT2 >—\—*L\
I NPUT4

J ORS

OR5
I NPUT6

INPUTS >

cl

kct |

&7 XILINX

A

| .

Page 30

Figure L. Operating mode clock steering module.

COUNTER_I NPUT3

COUNTER_I NPUT2

COUNTER_I NPUTS5

COUNTER_I NPUT4
OoR2
OoR2

COUNTER_I NPUT9

COUNTER_I NPUTS8 >—‘

CL OCKENABL E

L
=

COUNTER_| NPUT7
COUNTER | NPUT6 o2

VI EW ogi c

A | 5

Page 31

Figure M. SCLK enable control generator.

— €0

e
loT o Nt ‘0o _lnoT ‘0o
<O T 1TO
aan ssA
L
"
a
en

6

EREN

Lron anz]

SR EN

g

"
7Es o

~ES =Y «asf
eSS Gihos ovary
=5 Tias anedf
ST T avamy
Hﬂ& e

aan Tan ss.
S ving
Sthuo e

air

TevsT

°mau iepesy pieoq o1 pieom

HEHEEERRERERREREERNERER

Z-9TZVIT anv

pieoq o1 pieog

1opeay

Figure N. D2A daughter board schematic.

Page 32

Appendix B. VHDL Source Code

List of VHDL source codes:

1. Source code for LOAD signal generation.

2. Source code for Internal reset signal generation.
3. Source code fdCS signal generation.

4. Source code for operating mode clock steering.
5. Source code for SCLK enable control.

All VHDL source code are written in behavior level description.

Page 33

Page 34

library synth;

use synth.stdsynth.all;

entity loadgen is

port (signal counter_input: in vibit_1d(9 downto 0);

signal load: out vibit);

end loadgen ;

-- Architecture body:

architecture behavior of loadgen is

begin

control:process(counter_input)
begin
CASE (vl1d2int(counter_input)) IS
when 0 => |load <= ‘1";
when 1 =>load <='1’;
when 2 =>load <=1’;
when 3 => |load <=‘1";
when 4 =>load <=1’;
when 5 =>load <=1’
when others => load <='0’;
END CASE;
end process;
end behavior;

Code 1. Source code for LOAD signal generation.

library synth;
use synth.stdsynth.all;
entity strobe is
port (signal counter_input: in vibit_1d(9 downto 0);
signal strobe : out vlbit);
end strobe ;
-- Architecture body:
architecture behavior of strobe is
begin
control:process(counter_input)
begin
CASE (v1d2int(counter_input)) IS
when 0 => strobe <="'0’;
when 7 => strobe <="0’;
when 15 => strobe <="'0’;
when 31 => strobe <='0;
when 63 => strobe <=‘0’;
when 127 => strobe <="'0’;
when 255 => strobe <= ‘0’;
when 260 => strobe <= ‘0’;

when 261 => strobe <= ‘1’;
when 262 => strobe <= ‘0’;
when others => strobe <= '0’;
END CASE;
end process;

end behavior;

Code 2. Source code for Internal reset signal generation.

library synth;

use synth.stdsynth.all;

entity csbargen is

port (signal counter_input: in vibit_1d(9 downto 0);

signal csbar: out vibit);

end csbhargen ;

-- Architecture body:

architecture behavior of csbargen is

begin
control:process(counter_input)
begin
CASE (vl1d2int(counter_input)) IS
when 0 =>csbar <="'1’;
when 1 =>csbar <="'1’;
when 2 => csbar <="'1’;
when 3 =>csbar <='1’";
when 4 => csbar <=‘0’;
when 64 => csbar <=0,
when 67 => csbar <= ‘1";
when 68 => csbar <= ‘0’;
when 128 => csbar <= ‘0’;
when 131 => csbar <= ‘1";
when 132 => csbar <= ‘0’;
when 195 => csbar <= ‘1";
when 196 => csbar <= ‘0’;
when 256 => csbar <= ‘0’;
when 258 => csbar <= ‘0’;
when 259 => csbar <= ‘1";
when 260 => csbar <= ‘0;
when others => csbar <= ‘0’;
END CASE;
end process;

end behavior;

Code 3. Source code @8 signal generation.

Page 35

library synth;

use synth.stdsynth.all;

entity clkctl is

port (signal input : in vibit_1d(10 downto 0);

signal clockdisable: out vibit);

end clkcetl ;

-- Architecture body:

architecture behavior of clkctl is

begin
control:process(input)
begin
CASE (v1d2int(input)) IS
when 1024 => clockdisable <=0’
when 1025 => clockdisable <=0,
when 1026 => clockdisable <=0’
when 1027 => clockdisable <=0’
when others => clockdisable <="1";
END CASE;
end process;

end behavior;

Code 4. Source code for operating mode clock steering.

library synth;

use synth.stdsynth.all;

entity sclkctl is

port (signal counter_input: in vibit_1d(9 downto 0);
signal clockenable: out vibit);

end sclkctl ;

-- Architecture body:

architecture behavior of sclkctl is

begin
control:process(counter_input)
begin
CASE (vl1d2int(counter_input)) IS
when 0 => clockenable <=‘0’;
when 1 => clockenable <='0’;
when 2 => clockenable <=‘0’;
when 3 => clockenable <=‘0’;
when 4 => clockenable <='1’;
when 5 => clockenable <=1";

Page 36

when others => clockenable <="1’;
END CASE;

end process;
end behavior;

Code 5. Source code for SCLK enable control.

Page 37

